ReFS

Lukas Gemela

ReFS foundations

ReFS = Resilient File System
Nextgen file system for Windows
Introduced in Windows Server 8
Based on NTFS foundations
Currently usable for file servers

ReFS key goals

e Compatibility with NTFS

 Verify and autocorrect data

e Optimize for extreme scale

* Never take the file system offline
» Storage-spaces feature

NTFS vs ReFS

NTFS upper layer Upper layer
APl/semantics engine engine inherited from NTF5

NTFS on-disk store engine New on-disk store engine

NTFS.S5YS ReF5.5Y5

Interited features

* BitLocker encryption ¢ Volume snapshots
 ACL e File ID

 USN journal o Symlinks
 Change notifications « Mount points

* Oplocks « Same basic APl as
NTFS

Removed features

 Secondary streams ¢ Sparse files

 Hardlinks * Disk quotas
e Short names « Extended attributes
e Compression e EFS

* ObjectID

ReFS structure

Generic Key-Value interface, notion ,table"
Implementation = B+ trees

Benefits: scalable, simplifies the system,
reduces the code

Most tables have unique ID — Object ID

Object Table

ObjectID

Disk
Offset &
Checksum

Directory

ObjectID

Disk
Offset &
Checksum

File Name

File Metadata

File Metadata

ReFS structure

ObjectID

Disk
Offset &
Checksum

File Extents

ObjectID

Disk
Offset &
Checksum

File Name File Metadata
File Name File Metadata
File Name File Metadata

Key Value
Key Value
Key Value
Key Value

0-7894 Dé;':?::z?:‘ 5&
7895-10000 Dé;";?:::; ft
10001-57742 D&:Eﬁﬁ fl

57743-9002722 D":;‘;:’I::z\;: 531

Disk space allocation

* Hierarchical allocators

* Represents free space by table

» Table for small, medium, large memory chunks
* Accessible from Object table

Disk update strategy

* NTFS journal approach has some limits — e.g.

Jtorn write”

* Allocate-on-write approach — never update
metadata in-place!

 Write it to different location as atomic
operation

* Transactions & journals are still present

10

Resiliency to corruptions

 All metadata is checksummed

» Can detect all forms of disk corruption,
including lost and misdirected writes and bit
rot

 Metadata checksum (64bit) always turned on

» Content of file can be checksummed as well
— “Integrity streams”

11

Integrity streams

* Protect file content against all data corruption
 Checksums + copy on write approach
* Not appropriate for some cases (databases):

some apps rely on a particular file layout
some apps maintain their own checksums
=>API to control the settings

12

Integrity streams AP|

 FILE_ATTRIBUTE_INTEGRITY_STREAM

* Also attribute of a directory — inherited by all
files inside the directory

- D:\>format /fs:refs /q /i.enable <volume>
- By default — depends if volume is mirrored

13

Storage spaces

* Allows to organize several physical devices
into ,Storage pool”

- USB, SATA, Serial Attached SCSI

- Storage pool can be composed of heterogeneous
physical disks

- Physical disks are no longer visible for Win
« Usage of virtual disks (spaces) from pool

* Resiliency through mirroring and parity

14

Storage spaces

H

“Documents” Space

_Thinly Provisioned, Mirrored Resilie nf.L,..J

~

-

.

H‘_t h_

s 'l'~|
2TE‘ ‘ 2T4‘

~

=== Logical View

= Physical View

J

“My Home Storage” Pool

15

Resiliency through mirroring

 Mirrored space

* \We always store at least two complete copies
on different physical disks within the pool

* Disk failure does not affect pool or Win at all

* Upon disk failure, data copies are regenerated
for all affected spaces

 Hot-spare support

16

ReFS & Storage spaces

 They complement each other

- ReFS detect such a failure (using checksums)
- It interfaces with SP

— SP reads all available copies and chooses the
correct one (checksum validation)

- SP fix all bad copies with the correct one

 ReFS without SP — data corruption event is
logged

17

Battling bit rot

 bit rot” - data decay due to fact data was not
read for a long time

» SP: system task, periodically scrubs all
metadata and IS data on a ReFS volume

- Involves reading and validating all the redundant
copies

. FILE_ ATTRIBUTE_NO SCRUB DATA

18

When all alse fails...

 ReFS implements ,salvage”

- removes all corrupted data

- Non-repairable corruption does not affect the
good-data availability

- No Scandisk, no restarts, everything is online!
- Can be completed in under a second

19

Limits
Maximum size of a single file
Maximum size of a single volume
Maximum number of files in a directory
Maximum number of directories in a volume
Maximum file name length

Maximum path length

Maximum size of any storage pool

Maximum number of storage pools in a system

Maximum number of spaces in a storage pool

2"°64-1 bytes

2778 bytes with 16KB
cluster size

2764

2764

255 unicode characters
(compatible with NTFS)

32K
4 PB

No limit

No limit

20

Usage and future

Ready to be deployment-tested
Not a beta feature
Next step — storage FS for clients

— Then as a boot volume

In current stage it’s not possible to read ReFS
volumes from W8 client or earlier (officially)

- There are some ,ways"

21

ReFS Disadvantages

Not-bootable (yet)

Not-usable for removable devices (yet)

No direct data conversion from NTFS to ReFS
Not fully compatible with NTFS

Does not fit for databases or programs which
are using special NTFS features (e.g. Steam)

No support for UNIX

22

Sources

* http://blogs.msdn.com/b/b8/archive/2012/01/1
6/building-the-next-generation-file-system-for-
windows-refs.aspx

 http://blogs.msdn.com/b/b8/archive/2012/01/0
5/virtualizing-storage-for-scale-resiliency-and-
efficiency.aspx

23

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23

